Aller au sommaire principal

ULB - Université libre de Bruxelles

 

AIDE | QUITTER

   

Année académique 2012-2013
20/06/2019
Image transparente

Langue/Language


Numerical modelling of electromagnetic devices
ELEC - H419

I. Informations générales
Intitulé de l'unité d'enseignement * Numerical modelling of electromagnetic devices
Langue d'enseignement * Enseigné en anglais
Niveau du cadre de certification * Niveau 7 (2e cycle-MA/MS/MA60)
Discipline * Electricité
Titulaire(s) * [y inclus le coordonnateur] Johan DECONINCK (coordonnateur), Johan GYSELINCK
II. Place de l'enseignement
Unité(s) d'enseignement co-requise(s) *
Unité(s) d'enseignement pré-requise(s) *
Connaissances et compétences pré-requises * Bases d'électricité
Programme(s) d'études comprenant l'unité d'enseignement - IREM4E-E - Master en ingénieur civil électromécanicien, à finalité Electro-mécanique - 1e année - Master en ingénieur civil électromécanicien, à finalité Electro-mécanique,Option Energie - 1e année (4 crédits, obligatoire)
- IREM4R-E - Master of science in electro-mechanical engineering - 1e année - Master of science in electro-mechanical engineering, Option Energy I - 1e année (4 crédits, obligatoire)
III. Objectifs et méthodologies
Contribution de l'unité d'enseignement au profil d'enseignement *
Objectifs de l'unité d'enseignement (et/ou acquis d'apprentissages spécifiques) *

The first part of the course aims at providing a general overview of the different numerical methods that are available and commonly used to solve electrotechnical field problems (electric and magnetic fields). Each method is discussed. The focus is on a general and generic approach that provides a global link between the different methods such that they can even be combined. In this way we give a global background rather than focusing on the usage of existing software packages (Magnet, Cosmos, ...).
The second part concerns in particular the modeling of electromagnetic devices such as actuators and static and rotating electrical machines. An overview of particular aspects and techniques is given.

The students understand the different numerical methods that are available and they can make a proper choice for a specific electromagnetic problem they are faced with. They are able to read, understand and explain a given scientific paper on an electrotechnical topic in which these numerical methods are applied. These requirements concern both the first and second part of the course.

Contenu de l'unité d'enseignement *

Part 1. The physics behind the Maxwell equations are briefly recalled and the equations for electrostatics, electrodynamics, magnetostatics and magnetodynamics are derived and explained. This includes induced currents from motion and varying magnetic fields. Also the (laminar) Navier-Stokes equations for incompressible flow and the energy conservation equation are recalled and complemented with electromagnetic terms such that fully coupled thermal-electromagnetic problems are within reach. Finally the balance equations for transport of ions in electrolytes are given.
Based on the weighted residual method, and mainly applied to the Laplace equation, it is shown how the different discretisation techniques are derived and linked. We treat the finite element method (FEM), the boundary element method (BEM), the residual distribution method (RDM), the finite difference method (FDM) and a family of analytical methods.
We also treat the following numerical aspects:

  • non-linear boundary conditions (as encountered in electrochemical problems)
  • non-linear media (magnetic material)
  • iteration methods
  • calculation of derived quantities such as total current and flux.

The practical exercises start with the analysis of the global structure of a boundary element and finite element program. The students are next confronted with existing software in order to experience the fundamental properties of elliptic fields (boundary effects, sphere of influence, ...). Finally the students are asked to solve a particular electrotechnical problem.

Part 2. The modelling of electromagnetic actuators and electric machines is studied considering the following aspects:

  • particular 2D and 3D formulations
  • electrical circuit coupling, distinguishing between stranded and massive conductors •    modelling of movement of rotation •    force and torque calculation
  • magnetic material modelling
  • optimisation

This material will be illustrated by means of a number of test cases and practical exercises for the students.

Méthodes d'enseignement et activités d'apprentissages *
  • cours ex-cathedra
  • exercices théoriques
  • exercices de simulation
  • projets de simulation
Support(s) de cours indispensable(s) * Oui
Autres supports de cours
Références, bibliographie et lectures recommandées *
  • Finite element method: Zienkiewicz ('The finite element method set' - John Wiley and sons), P.P. Silvester ('Finite elements for electrical engineers' - John Wiley and sons), Kenneth H. Huebner ('The finite element method for engineers' - John Wiley and sons);
  • Boundary element method : C.A. Brebbia (e.g. 'Boundary Elements, An Introductory Course' - McGraw-Hill Book Company);
  • Documentation FEMM
IV. Evaluation
Méthode(s) d'évaluation *
  • Participation aux séances pratiques et rapports;
  • Examen oral.
Construction de la note (en ce compris, la pondération des notes partielles) *
  • part 1 : 50%
  • part 2 : 50%
Langue d'évaluation *

Anglais

V. Organisation pratique
Institution organisatrice * ULB
Faculté gestionnaire * Ecole polytechnique Bruxelles
Quadrimestre * Année académique (NRE : 23989)
Horaire * Premier quadrimestre - Deuxième quadrimestre
Volume horaire
VI. Coordination pédagogique
Contact *

Johan Gyselinck (ULB): http://beams.ulb.ac.be/en/users/johan-gyselinck

Johan Deconinck (VUB): http://ceg.vub.ac.be/content/members/johan.htm

Lieu d’enseignement *

Campus La Plaine (VUB), local K.2.Auditorium.3

VII. Autres informations relatives à l’unité d’enseignement
Remarques

Retour aux détails du cursus
Image transparente
Passer directement au début de la page
Version: 8.1.1.17